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Are cascading flows stable?
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The stability of flows cascading down slopes as dense inclined plumes is examined,
with particular reference to flows observed in Lake Geneva during winter periods of
severe cooling. A previous conjecture by Turner that the flow may be in a state of
marginal stability is confirmed: the observed mean velocity and density profiles are
unstable to Kelvin–Helmholtz instability, but only marginally so; the growth rates of
the most unstable small disturbances to the cascading flow in Lake Geneva are small,
with e-folding periods of about 2 h. A reduction in the maximum velocity by about
20 % is required to stabilize the flow.

The possibility that stationary hydraulic jumps may occur in the observed flow is
also considered. Several plausible flow states downstream of transitions are examined,
allowing for mixing and density changes to occur, ranging from one that preserves
the shape of the density and velocity profiles to one in which, as a consequence of
mixing, the velocity and density become uniform in depth within the cascading flow.
Neither of these extreme states is found to conserve the fluxes of volume, mass and
momentum through a transition in which the energy flux does not increase, and to
be unique or ‘stable’ in the sense that no further transition is possible to a similar
flow state without more entrainment. Stable transitions to intermediate downstream
flows that conserve flow properties and reduce energy flux are, however, found,
although the smallest value of the flow parameter, Fr ≡ U 2

max/g�h (where Umax is the
maximum flow speed, g is the acceleration due to gravity, � is a fractional density
difference within the flow and h is the flow thickness) at which transitions may occur
is only slightly less than that of the cascading flow in Lake Geneva. In this sense,
the observed flow is marginally unstable to a finite-amplitude transition or hydraulic
jump. Velocity and density profiles of possible flows downstream of a transition are
found. The amplitudes of possible transitions and the flux of water entrained from
the ambient overlying water mass are limited to narrow ranges.

1. Introduction
During very cold winter nights, cold water formed in the shallows around the edges

of the Lake Geneva cascades in gravity currents, each flowing for several hours down
the sloping sides of the lake and intruding into the upper part of the thermocline
(Fer, Lemmin & Thorpe 2002a). Figure 1(a, c) shows profiles of the down-slope
component of velocity, U (z), the along-slope component, V (z), and the density, ρ(z),
respectively, in the cascading water averaged over a 2 h period. The example was
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Figure 1. Profiles of (a) mean down-slope component of velocity, U (z), (b) mean along-slope
component of velocity, V (z), (c) mean density, and (d) gradient Richardson number (estimated
over 1 m and plotted in logarithmic form) obtained from observations in a 2 h period of
relatively steady flow in an inclined plume flowing down a mean slope of about 4.6◦ during
winter in Lake Geneva. The V component is part of the generally cyclonic wind-driven
circulation in the lake modified by internal seiches and by the effects of the Earth’s rotation.
The dotted curves in (a) and (c) are approximate fits of analytical shapes of velocity (given by
(2) with n= 4) and density ((3) with αh = 3.5) to the observed data, as explained in the text.

selected as one having a relatively small along-slope component of velocity to avoid
the complications that such flows may introduce.

Such down-slope flows of dense fluid are of common occurrence (Simpson 1997).
The profiles observed in Lake Geneva are similar in form to those of the classic
laboratory experiments by Ellison & Turner (1959) shown in figure 2. The maximum
current, Umax , is at a height above the bottom, hmax , of about 0.2 times the thickness,
h, of the down-slope flowing layer. (Observations in Lake Geneva find that hm/h is
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Figure 2. Typical profiles of (a) velocity at distances of �, 60 and �, 130 cm from the inlet,
and (b) density at distances of �, 70 and �, 140 cm (the upper points being multiplied by a
factor of 10 to show variations at small density differences), measured in an inclined plume on
a uniform slope of 14◦ by Ellison & Turner (1959) in a laboratory experiment.

0.18 ± 0.05, whereas Ellison & Turner’s two experiments of which profiles are shown
in figure 2 give slightly lower values, 0.15 and 0.09). At heights between hmax and
h there is a region in which the velocity decays roughly linearly with height. The
largest shear is found near the bottom at z =0. The density decreases with height,
z, roughly exponentially, although there is often an almost uniform layer very close
to the bottom, perhaps mixed by turbulence generated by the bed shear-stress and,
like the velocity, a near-linear decrease in density above the height, hmax . In some
profiles there is also a shallow region of higher density gradient near hmax . The value
of Fr ≡ U 2

max/g�h is used to characterize the flow. Here � is a fractional density
difference, the difference between the densities in the flow at the bed and at height, h,
divided by their sum, and g is the acceleration due to gravity. (The value of Fr used
here is half that defined using a fractional density difference based on the difference
in densities divided by their mean). Fr is about 3.89 in Ellison & Turner’s experiments
on a slope of 14◦ and values range from about 2 to 4 in Lake Geneva where the
bottom slope is about 4.6◦. The value of Fr corresponding to the flow shown in
figure 1 is 3.34. Ellison & Turner find that a dynamical balance between the frictional
and buoyancy forces is achieved in a plume at a down-slope distance from its source
of about 10h0, where h0 is the initial plume thickness. Taking h0 as the water depth in
the shallow shelf region surrounding the lake, plumes in Lake Geneva should achieve
a dynamically balanced state in a down-slope distance of 30–50 m, a distance short
compared to the length, several hundred metres, of the distance to the location of the
observations in figure 1.
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Values of the gradient Richardson number, Ri, determined from the mean down-
slope velocity and density profiles in Lake Geneva are shown in figure 1(d). Values
less than the Miles–Howard condition necessary for flow stability, 0.25, are found
in the region above the level z = hmax (where Ri tends to infinity) and Ri is also
relatively small near the bed. Turner (1973, § 6.2.4) introduces the idea that the upper
region of an inclined plume, a region where the flow is turbulent but where the
mean velocity and density profiles are approximately linear, could be maintained
in a state of marginal stability. It is physically plausible for the mean flow to be
maintained in a marginal state because, when turbulence is enhanced by instability of
the mean flow, so too is the turbulent Reynolds stress, and so the flow subsequently
decelerates, leading to a decay in turbulence. However, the fluid still contains residual
stratification, being most dense near the sloping boundary, and so is then accelerated
by the down-slope component of gravity, leading to renewed instability with a further
increase in turbulence, and the cycle repeats, never developing far from the marginal
state at which instability occurs. In support of this concept, Turner (1973, § 5.3.2)
quotes Mittendorf’s (1961) observations of repeated Kelvin–Helmholtz instability in
flow in a tilted tube filled with, initially, two distinct miscible layers. Instability in the
form of billows is followed by flow deceleration, the collapse of turbulence, and flow
acceleration followed by the repetition of instability. (This idea was applied by Thorpe
& Hall (1977) in a study of the stability of a wind-forced stratified near-surface flow in
Loch Ness. The mean flow was found to be stable, but close to conditions of marginal
stability). From the experiments of Ellison & Turner (1959), Turner estimates that
the gradient Richardson number of the mean flow in the region, assumed to be
near the critical Richardson number, Ri c, characterizing marginal stability, is about
0.062 ± 0.002. (Correction has been made for the tilt of isopycnals.) It is remarkable
that, although the flow is turbulent, its nature is possibly characterized by a parameter
based on the linear stability of an inviscid and steady mean flow. Turner does not,
however, establish whether the observed mean flow is close to a marginal state when
the Richardson in the region of near-linear profiles is about 0.062.

The steady cascading flows in Lake Geneva are punctuated by pulses of water,
apparently similar to the roll waves that occur in steep and shallow open channel
flows (Fer et al. 2002a), and similar pulsations are observed in both rotating and
non-rotating flows (Cenedese et al. 2004). No such pulsations or flow variability were
observed by Ellison & Turner (private communication, J. S. Turner). Fluctuations in
a developing inclined plume are studied by Pawlak & Armi (2000) in connection with
the observed flows over the sill in Knight Inlet, British Columbia. They attribute the
large-scale variations observed in the flow to the marginal stability of the upper shear
layer, but do not examine the solutions of the Taylor–Goldstein equation (Drazin &
Reid 1981) to see if this is the case, and disregard the effects on the flow of the
bottom boundary layer. They observe that the frequency, measured at a fixed point,
of the passing large-scale structures attributed to marginally unstable disturbances in
the flow, is approximately equal to the buoyancy frequency in the stratified plume.

Similar flow fluctuations are found in down-slope windstorms in the atmospheric
boundary layer in the lee of topographic ridges, although in conditions of more
complex flows affected by radiating internal waves. Neiman et al. (1988), for example,
report fluctuations at two frequencies in cascading flow in the foothills west of
Boulder, Colorado. Peltier & Scinocca (1990) solve the Taylor–Goldstein equation
and the corresponding equation describing the spatial growth of disturbances, and
demonstrate that, in accord with analysis by Gaster (1962) growth rates are equivalent.
(Gaster (1962) demonstrates that the temporal growth rate, σi , and the spatial growth
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rate, ki , are related by the disturbance group velocity, ∂σr/∂kr : σi/ki = −∂σr/∂kr ,
where subscripts r and i represent real and imaginary parts of the frequency, σ ,
and wavenumber, k, of the disturbance.) Peltier & Scinocca attribute the fluctuations
observed at the ground to Kelvin–Helmholtz instability centred in a shear layer at a
height of some 4 km.

Our objective is to examine the stability of cascading flows to small disturbances
taking as a particular example the flow observed in Lake Geneva and, further, to
establish the conditions in which hydraulic jumps or transitions to different flows
may occur. The former study provides information to address whether the flow is in
a state of marginal stability as suggested by Turner, whilst the latter is related to
the stability of the flow in passing finite changes in bottom topography or, as in a
flow downstream of a weir, as the water cascading down a slope enters a pool of
denser water, the lake’s thermocline. Although the steady but turbulent down-slope
flows that are observed are a consequence of a balance between the down-slope
component of gravitational forces and the combined drag forces of the bottom and
overlying fluid acting on the current, for simplicity we shall neglect the effects of
friction and turbulence on the mean flow and disregard the bottom slope in the way
that is common in studies of hydraulic phenomena in open-channel flows. We shall
therefore ignore the component of gravity parallel to the sloping boundary and, in
the subsequent analysis of Kelvin–Helmholtz instability and hydraulic transitions, we
consider the stability of steady laminar inviscid flows over a horizontal boundary,
choosing some analytical forms for the velocity and density profiles of the inclined
plumes as well as those shown in figures 1 and 2, so as to investigate the sensitivity
of our conclusions to the flow conditions.

We first consider the possibility of Kelvin–Helmholtz instability in some analytical
velocity and density profiles resembling the flows observed (§§ 2.1–2.2). Readers
interested in the observed flows may wish to omit § 2.2 and go to the discussion
of their stability in § 2.3. The results show that the flows are marginally unstable as
conjectured by Turner, even though the minimum gradient Richardson numbers are
substantially less than the commonly adopted (or assumed) ‘critical’ value of 0.25 (e.g.
see Gray, Alexander & Leeder 2006). The conditions for transitions or hydraulic jumps
to occur from the observed flows to others are considered in § 3. These conditions,
characterized by the size of Fr and the amplitude of jumps, naturally depend on
the types of flow selected downstream of the transition. For the flow observed in
Lake Geneva, the downstream flow states, the velocity and density profiles to which
transitions are possible, and the amplitude of the jumps, appear to be limited. The
main results are discussed in § 4.

2. Kelvin–Helmholtz instability
2.1. Known solutions for boundary jet profiles

The stability of an inviscid stratified shear flow, U (z), to small disturbances is
determined by the solutions of the Taylor–Goldstein equation,

d2ϕ/dz2 + {N2/(U − c)2 − k2 − d2U/dz2/(U − c)}ϕ = 0, (1)

where the streamfunction is ψ(x, z, t) =φ(z) exp[ik(x−ct)], k is the (real) wavenumber
in the horizontal x-direction, c = cr + ici is the complex wave phase speed and N

is the buoyancy frequency. Boundary conditions are that the vertical velocity, and
therefore φ(z), are zero at the rigid boundary, z =0, and that φ(z) tends to zero as z
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tends to infinity. Solutions with kci > 0 grow exponentially in time and are therefore
unstable.

It may be anticipated that the critical Richardson number, Ri c, in stably stratified
jet-like flows over a rigid boundary will be less than 0.25. Miles (1967) showed that
flows in which the velocity and density both decrease exponentially at the same
rate with distance from a horizontal boundary are stable at all positive values of
Richardson number; Ri c is equal to zero. Profiles with dU/dz and dρ/dz constant in
a layer adjoining a horizontal boundary, a layer above which the velocity and density
are constant, are also found to be stable, with Ri c = 0.

2.2. Some numerical solutions of analytical boundary jet profiles

Hazel (1972) solves the Taylor–Goldstein equation numerically and finds that, when
N is constant, the critical Richardson number, Ri c, of second mode disturbance of
the Bickley jet (U (z) = U1 sech2az ) is 0.184. The central streamline (at z = 0) to the
second mode disturbances is horizontal and may be replaced by a rigid horizontal
plane; the second mode solution of (1) is identical to that of a jet-like flow over a
rigid boundary. As before, Ri c < 0.25. The resulting ‘half Bickley jet’ profile differs
from the examples in § 2.1 in that it contains a velocity inflection point removed from
the horizontal plane at z =0. Inflection points, although not essential for instability in
stratified flows, are known by Rayleigh’s inflection point theorem to be necessary for
instability in unstratified flows and may help promote instability in stratified flows.

None of the above examples, however, satisfies a no-slip condition at the horizontal
boundary: unlike the profiles shown in figure 1 and 2, the mean velocity does not
tend to zero at z =0. Some analytic profiles that satisfy the no-slip condition of the
mean flow are considered to provide illustration and reference before the real flows
are examined in the next section.

A form of velocity profile that reproduces some of the main features that are
observed is

U (z) = U1[π(1 − z/h)]n sin[π(1 − z/h)], (2)

where U1 is a constant velocity, h is the thickness of the layer moving down-slope, and
n is an integer. Figure 3(a) shows the velocity profiles for selected values of n. The
value n= 4 gives a velocity profile that has a maximum, Umax , equal to 23.61U1, at
hmax/h = 0.183, corresponding approximately to the height of the velocity maximum
in the velocity profile of figure 1(a), where (with speeds, Umax , matched) it is shown
for comparison by a dotted line. It underestimates the velocity gradient in the region
above hmax . There is an inflection point in the n= 4 velocity profile at z =hinf where
hinf /h = 0.355 and where U =15.1U1 or 0.64Umax . Some of the properties of this and
other profiles are given in table 1.

An exponential density profile,

ρ(z) = ρ0{1 − � + 2�([exp(−αz) − exp(−αh)]/[1 − exp(−αh)])}, (3)

where ρ0 is a reference density and � is a non-dimensional constant, so that
ρ(h) = ρ0[1 − �] and ρ(0) = ρ0[1 + �], is an approximate fit to the observed profile
in Lake Geneva (figure 1c) when αh ≈ 3.5. It is shown by curve A in figure 3(b) and
by the dotted line fitted to the observed density range in figure 1(c). The gradient
Richardson number, Ri = − (g/ρ0) dρ/dz/(dU/dz)2, for the velocity profile (2) with
n=4 and when the density is represented by (3) with αh= 3.5, is shown in logarithmic
form in figure 3(c). As explained later, it is scaled so that the minimum Ri has the
value found at marginal stability. The Richardson number is infinite at the velocity
maximum, z/h = 0.183, and has its smallest value, Ri 0, at the boundary, z = 0. It has
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Figure 3. Profiles of (a) velocity given by (2) for various specified values of n, and (b) density
given by A: (3) with αh = 3.5 and B: (4). (c) shows the logarithm of the Richardson number,
logRi, corresponding to the velocity profile in (a) with n= 4 and the density profile A of (b).
The Richardson number is scaled to fit the conditions of marginal stability with Ri 0 = 0.028.

U (z) ρ(z) Umax/U1 W/Umax H/h1 Ri inf /Ri 0 hmax/h hinf /h

(2), n = 3 (3), αh= 3.5 9.37 0.744 0.555 3.30 0.220 0.423
(2), n = 4 (3), αh= 3.5 23.6 0.736 0.494 5.42 0.183 0.355
(2), n = 5 (3), αh= 3.5 61.7 0.729 0.445 7.74 0.155 0.305
(2), n = 4 (3), αh= 2.5 23.6 0.744 0.494 7.73 0.183 0.355
(2), n = 4 (3), αh= 4.5 23.6 0.744 0.494 3.79 0.183 0.355
(2), n = 4 (4) 23.6 0.744 0.494 26.0 0.183 0.355
Figure 1(a) Figure 1(c) 1 0.697 0.633 16.3 0.187 0.304

Table 1. Characteristic values of the model and observed flows used to study the onset of
Kelvin–Helmholtz instability. Values are given of ratios characterizing 6 models of a stratified
boundary jet of depth, h, defined by equations (2), (3) and (4) as listed under U (z) and ρ(z), and
from the profiles of the observed cascading flows in Lake Geneva, figure. 1(a–c), respectively.
Umax is the maximum current, found at height hmax , and W and H are integral scales given
by WH =

∫
U (z) dz and W 2H =

∫
U 2(z) dz. The Richardson numbers are Ri inf and Ri 0 at

the inflection point at height, hinf , in the velocity profile and at the bottom, z = 0, respectively.
There is considerable uncertainty in the estimate of Ri inf /Ri 0 for the observed profile.

a second, but larger, minimum, at z/h = 0.405 where Ri is a factor of 5.03 greater
than Ri 0. The Richardson number at the inflection point at z/h = 0.355, Ri inf , a
useful measure of Ri in the layer above the velocity maximum, is 5.42 Ri 0. (This
is as shown in table 1.) The minimum Ri can be written as Ri 0 = 0.0430g�h/U 2

max

and so Ri inf =0.233g�h/U 2
max or 0.233Fr−1. In recognition of its significance in the

Miles–Howard theorem, it is usual to use the minimum value of Ri (here that at z = 0)
in defining a critical value, but, in this case, values are more easily measured above
the velocity maximum, in particular at the inflection point in the velocity profile, and
we therefore refer to both, e.g. in table 2.

The equivalence between the growth of temporally growing and spatially growing
disturbances with low growth rates in such stratified shear flows is established by
Peltier & Scinocca (1990). We have therefore solved the Taylor–Goldstein equation
using the profiles of velocity and density, (2) and (3), in 0 � z � h and with U (z) = 0
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U (z) ρ(z) Ri c kh Fr c Ri infc Fc

(2), n = 3 (3), αh= 3.5 0.045 1.7 1.49 0.149 1.49
(2), n = 4 (3), αh= 3.5 0.028 1.8 1.54 0.151 1.68
(2), n = 5 (3), αh= 3.5 0.020 1.95 1.49 0.155 1.78
(2), n = 4 (3), αh= 2.5 0.020 1.85 1.62 0.155 1.77
(2), n = 4 (3), αh= 4.5 0.039 1.9 1.39 0.148 1.52
(2), n = 4 (4) 0.0059 1.9 2.02 0.153 2.21
Figuge 1(a) Figure 1(c) 0.0035 ± 0.0002 1.8 2.23 0.24 1.32

Table 2. Critical values at the onset of Kelvin–Helmholtz instability. As in table 1, values are
given from 6 models of a stratified boundary jet of depth, h, and from the profiles of the
observed cascading flows in figure 1(a–c). The value of the critical Richardson number, Ri c ,
is the minimum value of Ri in the profiles at the onset of instability, in each case being that
at height, z = 0. The non-dimensional wavenumber, kh, is that of the disturbance wavenumber
that first becomes unstable and is in each case close to the fastest growing disturbances when
the minimum Ri is less than Ri c . The term, Fr c = U 2

max/g�h, is the smallest value at which
instability can occur. The critical Richardson number at the inflection point in the velocity
profile is Ri infc and Fc is the value of the non-dimensional number, W 2/g�H , based on the
integral scales, W and H , at marginal stability.
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Figure 4. Stability curves for first mode disturbances in a flow with velocity given by (2)
with n= 4 and density by (3) with αh = 3.5. (a) the neutral curve in the plane of Ri 0 (the
value of Ri at z = 0) and Ri inf versus kh and, (b), the growth rates, non-dimensionalized by
dividing the dimensional rates by Umax/h, as a function of kh at different specified values of
Ri 0. (Corresponding values of Ri inf can be found by multiplying by 5.42.)

and ρ(z) = ρ0[1 − �] in z >h, so that U and ρ are continuous at z = h. Numerical
solutions of (1) are obtained using a standard ‘shooting’ method over a range of
possible values of the real phase speed (0 <cr <Umax ) and non-zero imaginary phase
speeds, ci , with corresponding growth rates, kci , seeking conditions in which the
vertical velocities and pressures in the streamfunction solutions within the stratified
shear layer at z =h are matched to potential flows in the uniform overlying layers in
z >h, and with interpolation to find the stability boundaries. Details of the matching
conditions are given by Drazin & Reid (1981, § 23). Integration through the stratified
shear layer makes use of Stoermer’s rule (see Press et al. 1992, § 16.5). The number of
turning points of the streamfunction, giving the mode of the disturbances, is counted
and the solutions constrained to the mode number under investigation.

Figure 4(a) shows the stability curve in the plane of Ri 0 (the value of Ri at z = 0)
or Ri inf versus non-dimensional wavenumber, kh, for the forms of velocity given by
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(2) when n= 4 and density by (3) with αh= 3.5. Growth rates for the first mode,
non-dimensionalized with Umax/h, are shown in figure 4(b). No modes higher than
the first are found to be unstable. The critical Richardson number, Ri c, the largest
value of Ri 0 at which instability can occur, is 0.028, and the profile of log(Ri) when
Ri 0 = 0.028, the marginal value, is that shown in figure 3(c). The equivalent condition
for instability of the flow becomes Fr ≡ U 2

max/g�h > 1.54, = Fr c, where Fr c represents
the critical value above which flow is unstable. The value of Ri inf at marginal stability,
Ri infc , is 0.151. As foreseen, the critical Richardson number is therefore significantly
less than 0.25 (indicated by an arrow in figure 3c) and the minimum Ri in the flow
above the velocity maximum is 0.14. (This is substantially greater than the value of
about 0.062 ± 0.002 observed in the upper region of inclined plumes by Ellison &
Turner and, although the profiles of velocity and density differ, suggests that flows
less than those observed by Ellison & Turner by a factor 1.5 may be ‘just unstable’.)

As shown in figure 4(b), the growth rates of disturbances at a given value of
kh increase as Ri 0 decreases. The greatest dimensional exponential growth rate is
0.217Umax/h in the absence of stratification (or when Ri 0 = 0) and when kh = 1.95.
The maximum growth rates depend on Ri 0 but are close to the non-dimensional
wavenumber, kh =1.8, corresponding to a wavelength, 2π/k, equal to 3.49h. For
example, from figure 4(b), the maximum growth rate of disturbances when Ri 0 = 0.012
(or Ri inf = 0.065) is about 0.12Umax/h.

At constant values of Ri <Ri c, the phase speed of unstable disturbances and
the height at which their streamfunctions, and therefore the vertical velocities, is a
maximum, both decrease with non-dimensional wavenumber kh. The streamfunction,
and therefore the vertical velocity of the fastest growing waves, has a maximum
at about z/h = 0.58, well above the level of the inflection point, z/h = 0.355. The
phase speed of the fastest growing waves is, however, close to the speed, 0.64Umax ,
at the inflection point. This implies that the frequency of the fastest growing
disturbances, σr , measured at a fixed point is about kU, where U is the flow
speed at the inflection point, giving a frequency, σr = 0.64 × 1.8Umax/h= 1.15Umax/h.
The buoyancy frequency at the inflection point, Ninf , is found, using (3), to be
given by N2

inf = 2(g�/h)(αh) exp[−(αh)(z/h)]/[1 − exp(−αh)]} at z/h =0.355, or,

with αh= 3.5, Ninf =1.44(g�/h)1/2. It follows that Ninf /σr =1.25Fr−1/2 = 1.01 when
Fr = U 2

max/g�h has the marginal value, 1.54. This is consistent with the conclusion
by Pawlak & Armi (2000) that the frequency of disturbances is close to the buoyancy
frequency in the shear zone in the upper region of the inclined plume.

For comparison, critical values of parameters for other velocity and density profiles
are given in tables 1 and 2. These include

ρ(z) = ρ0{1 − � + 2�(1 − z/h) sin[(π/2)(1 − z/h)]}, (4)

shown in figure 3(b) representing the reduced density gradient near z = 0 observed in
figure 2 (although extending too far from the boundary). In each case, the minimum
Richardson number is at z =0. Values of Fr c range from 1.39 to 2.02, less than the
values of Fr =3.34 and 3.89 observed in Lake Geneva and by Ellison & Turner in the
laboratory, respectively, suggesting that these flows are likely to be unstable. Although
Ri c is sensitive to the choice of velocity and density profiles, especially those near
z = 0, the wavelengths of the fastest growing disturbances, 2π/k = 2πh/(1.7 to 1.95)
have a relatively small range and, scaled to the Lake Geneva and laboratory values
of h, are about 80 m and 16 cm, respectively.



420 S. A. Thorpe and B. Ozen

2.3. Stability of observed profiles

2.3.1. The down-slope flow U (z)

Although providing instructive and useful guidance to the likely ranges of Ri c and
Fr c, to the wavenumbers of the fastest growing disturbances, and to the sensitivity to
the adopted profiles of velocity and density, the analytical profiles analysed in § 2.2
do not precisely represent the observed profiles shown in figures 1 and 2, and the
Taylor–Goldstein equation has therefore been solved numerically with the observed
profiles of velocity and density in the range 0 � z � h.

The down-slope flow, U (z), in Lake Geneva is found to be unstable to a disturbance
of the first mode. The fastest growing wavelengths are 85.7 ± 2.3m (kh = 1.76 ± 0.05)
with phase speeds of 0.0456 m s−1 (compared to the maximum current of 0.0865 m s−1).
The maximum amplitude of the vertical velocity of the fastest growing disturbances is
greatest at a height of about 15.2 m. The exponential growth rates of these disturbances
are, however, very small, 1.365 × 10−4 s−1, corresponding to waves being amplified by
a factor e =2.718 over a period of 2.04 h. Observed values of Ri are a factor 1.5 ± 0.1
smaller than critical (characterized either by the minimum Ri or by that at the
inflection point). The critical value, Fr c, is 2.23, compared to the observed value, 3.34.
A reduction in the flow speed of about 20 % is required to stabilize the flow. Flows
with the observed shape of profiles will be stable if the Richardson number in the
uniform shear region above the velocity maximum exceeds about 0.2.

In the sense that the growth rates of the fastest growing disturbances are small and
that a relatively small decrease in the maximum current would lead to stability, the
observed flow in the inclined plume is in a state of marginal instability, as conjectured
by Turner.

The speed of propagation of non-growing waves relates to the existence of hydraulic
jumps, as discussed in § 4. Solutions of the Taylor–Goldstein equation, (1), are
found for upstream propagating waves, those with negative phase speeds, cr < 0,
and with ci = 0 (non-growing waves) when the density and velocity profiles are
chosen as those in Lake Geneva. The phase speed of long mode 1 waves approaches
the minimum flow speed (zero in the upper layer and at z = 0) as Fr increases,
being −1.39 × 10−2 m s−1 when Fr = 0.209, −3.77 × 10−3 m s−1 at the observed value
Fr = 3.34, and −1.69 × 10−3 m s−1 at Fr = 16.2. (The phase speed is approximately
given by c = −0.132UmaxFr−1. The minimum Ri is less than 0.25 in flows with
Fr > 0.374, beyond the range of Bell’s (1974) general results regarding the properties
of internal wave propagation with Ri > 0.25. Upstream wave propagation is in accord
with the conclusions of Pratt et al. 2000.)

Solutions of the Taylor–Goldstein equation have also been found for Ellison &
Turner’s velocity and density profiles of figure 2 measured at 130 cm and 140 cm,
respectively, from the inlet. The flow is again found to be unstable. Mode 1
disturbances of wavelength 23.3 cm have a growth rate of 0.362 s−1, so growing
exponentially in about 2.76 s. The maximum amplitude of the vertical velocity of this
disturbance is greatest at a height of about 0.85 cm and above the velocity maximum
0.38 cm above the boundary. The height of the velocity maximum is small and it is
doubtful whether neglect of the effects of viscosity is justified in this case.

2.3.2. The effect of along-slope flow

The along-slope flow, V (z), (figure 1b) in Lake Geneva is non-zero and the flow
direction varies with z. We have therefore examined the stability of the flow (U (z),
V (z)), to two-dimensional disturbances in directions inclined at angles, α, to the
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down-slope direction. As in Thorpe (1999), U (z) in the Taylor–Goldstein equation,
(1), is now replaced by W (z) = U (z) cos α+V (z) sinα, and the streamfunction becomes
ψ(x, z, t) =φ(z) exp[ik(x − ct)], where x is now in the direction α. This equation has
been solved numerically as before to find the maximum growth rate, kci , as a function
of α. The maximum growth rate is found when α =3.5◦ and kh = 1.81 ± 0.05, and
differs insignificantly from that in the preceding section for the down-slope flow (when
α = 0◦).

In summary, in this case at least, the effect of the along-slope flow on the growth
rate, wavelength or form of the fastest growing disturbance is very small. The observed
flow is marginally unstable to Kelvin–Helmholtz instability.

3. Hydraulic jumps
3.1. Introduction

We now consider whether steady flows like those observed in cascades can undergo
stationary (or ‘standing’) transitions to other steady flows, a form of finite-amplitude
instability. It is assumed that the fluxes of volume, mass and momentum of flows are
conserved in passing through a transition, but that the energy flux cannot increase.
The presence and effect of turbulence within the flow upstream of a transition is
ignored and so, for example, the horizontal components of the Reynolds stress and
the flux of turbulent energy into a transition or hydraulic jump are disregarded.

A major problem in the analysis is that, although the flow upstream of a jump is
known, or can at least be specified, the flow downstream is unknown. In the past,
this problem has generally been avoided by taking two-layer flows with uniform
densities and velocities in the layers both up- and down-stream of a jump, and with
the density in each layer remaining unchanged through the transition (e.g. see Baines
1995) or changing in one of the two layers as a consequence of entrainment at the
jump (Holland et al., 2002). Even if the flow approaching a transition is layered (with
Kelvin–Helmholtz instability at the interfaces between layers somehow suppressed),
in miscible fluids, a jump to another layered flow with discontinuous density and
velocities is unrealistic. In the conditions encountered in real flows, mixing occurs in
the transition and the downstream density profile cannot retain a form with discrete
uniform layers. The flow considered here does not have a uniform layer structure
upstream of a postulated transition, and possibly not downstream. To examine and
span the possible range of transitions we shall later make choices of the form of
the flow downstream of the transition, selecting extreme examples that span possible
cases, including one in which the moving fluid adjoining the rigid boundary becomes
uniform in velocity and density downstream of a transition.

It is supposed that fluid may be entrained from the upper layer at a rate, Q, within
the transition, with a concomitant change in density, but (as justified by Thorpe 2007)
the entrained fluid is supposed to carry a negligible flux of kinetic energy into the
transition region from the overlying fluid.† A parameter, P , is defined so that the
ratio of Q to the volume flux ahead of a transition is equal to P − 1(�0).

3.2. Transitions from the observed profiles

We consider possible transitions of the observed down-slope flow, U (z), in Lake
Geneva, for simplicity (as in § 2.3.1) at present disregarding the relatively small

† Although not generally significant, a reviewer points out that the flux may affect the location
of the curves, E = 0, in figures 5 and 6.
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along-slope, V , component, as well as the effects of the bottom slope, flow acceleration
and rotation.

We first assume, for generality, that the profiles of velocity and density given by
the equations,

U (z) = UiFi(z/hi) when 0 � z � hi, (5)

with Ui(z) = 0 when z >hi , and

ρi(z) = ρ0[1 − � + 2�fi(z/hi)] when 0 � z � hi, (6)

with ρi(z) = ρ0(1−�) when z >hi , where i = 1 represents the steady flow approaching
a jump and i = 2 the flow downstream. Here, df i(z/hi)/dz < 0 to ensure static stability,
and f1(0) = 1, so defining 2ρ0� as the density change from z = 0 to z = h1 upstream
of a transition. A no-slip condition at the lower boundary is satisfied if Fi(0) = 0. If
Fi(1) = 0, the velocity is continuous at z = hi .

3.2.1. The shape-preserving transition

Conservation equations are derived by Thorpe (2007) and, for easy reference, are
summarized in the Appendix. We first suppose that the shape of the profiles of
velocity and density are preserved in the transition (a ‘shape-preserving transition’),
but that the density may decrease, say,

F1(z/h1) = F2(z/h2) = F (x),

and

f1(z/h1) = f (x), f2(z/h2) = δf (x), (7)

where 0 <δ < 1. Taking Ui to be the maximum velocity in the velocity profiles, so
that U1 = Umax , and |Fi | � 1, and calculating integrals from the observed profiles of
figure 1(a, c), we find that (A6) reduces to P = 1/δ � 1. The integrals in (A9) and
(A10) can be found from the values in figure 1(a, c), giving

Fr = 0.2644q(q2 − P )/[P (q − P 2)], (8)

and

E′/(gρ0�Umaxh2
1) = 0.12343Fr(1 − P 3/q2) − 0.2798qP + 0.00116q + 0.2786, (9)

where E′ is the reduction in energy flux per unit width through the transition. We
define a non-dimensional energy loss rate per unit channel width as

E ≡ E′/[(g�h1)
3/2ρ0h1] = [E′/(gρ0�Umaxh2

1)]Fr1/2, (10)

where, as before, Fr = U 2
max/g�h1, and q = h2/h1, the ratio of the thickness of the

flows downstream and upstream of the jump, and a measure of the jump amplitude.
Both q and P are greater than or equal to 1.

Equations (8) and (9) can be used to determine values of Fr and E for a range of
values of P and q , �1, as shown in figure 5(a) together with the contour, S =1, given
by (A12) that determines whether the flows downstream of transitions at particular
values of P and q may themselves be subject to further shape-preserving transitions
without entraining fluid from the upper layer: no such transitions can occur when
S < 1 and in such cases the possible transitions are regarded as being stable. No real
values of Umax are possible in regions where Fr < 0. The figure shows that E < 0 for
all values of P and q on the curve Fr = 3.34. No shape-preserving transitions are
therefore possible for the flow with Fr =3.34 observed in Lake Geneva. Indeed, for
flows with profiles of velocity and density with the observed shape, none can occur
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Figure 5. The curves, E = 0, of zero loss in energy flux and of, S = 1, bounding regions of
stable transitions as q and P vary. For given P , S < 1 and the flow is stable at values of
q exceeding those on S = 1, i.e. to the right-hand side of the curve S = 1. The flow profiles
upstream of a possible transition are as shown in figure 1(a, c). The cases illustrated are (a)
the shape-preserving transition; (b) the transition to mixed conditions of uniform velocity and
density; (c) the transitions to flows with linear density profiles and velocity profiles (2) with
n= 1. Regions E > 0 and E < 0 are labelled. The line S = 1 is shown as a dashed line and
contours of Fr = U 2

max/g�h1 are shown by labelled dotted lines. The limiting values of Fr (Fr c)
at E = 0 or S = 1 are indicated by arrows. The value of Fr observed in the Lake Geneva data
is 3.34, one of the contoured curves.

until Fr exceeds 12.5 when only jumps of amplitude q > 6.36 conserve volume, mass
and momentum fluxes and lose energy in the transition. It is therefore necessary to
increase Umax by a factor 1.93 from 0.0865 m s−1 to about 0.167 m s−1, keeping h1 and
� constant, before a jump preserving the profile shapes can occur.

A similar analysis of the profiles of velocity at 130 cm and density at 140 cm from
the inlet in Ellison & Turner’s laboratory experiments shows that no shape preserving
transition can occur with a loss in energy flux unless Fr > 158.8 and when q > 48.6,
both unrealistically large values: in practice, no shape-preserving transition is possible.
(Shape preserving transitions of profiles of velocity given by (2) with n= 3 and 4 with
density given by (3) with αh= 3.5 have also been examined: the values, Frc at which
transitions are possible are summarized in table 3.)
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U (z) ρ(z) Fr c q

(2), n = 3 (3), αh = 3.5 4.11 2.86
(2), n = 4 (3), αh = 3.5 1.75 1.58

Figure 1(a) Figure 1(c) 12.5 6.36
Figure 2(130 cm) Figure 2(140 cm) 158.8 48.6

Table 3. Values of the critical values, Fr c = U 2
max/g�h, required before shape-preserving

transitions can occur in model and observed flows, and the smallest value of the jump
amplitude, q , at which a transition can occur. The higher values of Fr c and q found for
the observed flow in figure 1 (line 3 of the table) compared to those of the model (line 2)
derive from an overestimate using the model values of the change in the flux of kinetic energy
(the first term on the right-hand side of (A12)) by about 38 % and an underestimate of the
remaining flux changes by 29 %, for given q .

3.2.2. Transition to a mixed state

Shape-preserving transitions of the cascading flow in Lake Geneva appear
impossible. Suppose that instead of seeking conditions in which the profile shapes
are preserved, we investigate the other extreme, a transition that mixes the velocity
and density and makes them both uniform beneath the overlying fluid that is still at
rest and of density ρ0(1 − �). In this case, we can take F2(z/h2) = 1 and f2(z/h2) = δ.
Proceeding as before, figure 5(b) shows the curves of constant Fr, E = 0 and S = 1
in the (q, P )-plane. When Fr = 3.34, corresponding to the flow in figure 1, there are
transitions with E > 0 for small values of P − 1. All are, however, unstable (S > 1)
in that the flows downstream of transitions are prone to further shape-preserving
transitions without entrainment; with mixing characterized by P , the chosen flow
downstream of the assumed transition is not unique. In this sense no stable energy-
loosing transition of the observed flow to a mixed state can occur. A value of Fr > 3.66
is required for a stable transition to occur with q > 1.47.

3.2.3. Transition to other states

Transitions of the observed flow to other downstream states have been considered.
As an example intermediate between the shape-preserving transition and that to a
mixed state, we show in figure 5(c) the results of taking a downstream density with
a uniform gradient, so f2(z/h2) = δ(1 − z/h2), and velocity given by (2) with n= 1.
Transitions with E > 0 can occur when Fr = 3.34 for values of q < 1.13 and small
P −1, but these are unstable (S > 1). Only when Fr > Fr c = 5.90 can stable transitions
occur with E > 0 and then with q > 2.62. Once again, no stable transition can occur
for the velocity and density profiles of figure 1(a, c) when Fr = 3.34.

The question then arises: ‘Can any downstream profiles of density and velocity be
found to which the cascading flow observed in Lake Geneva can change in a stable
transition with a reduction in energy flux?’ To investigate this, density profiles have
been taken with the form

f2(z/h2) = δ[1 − z/h2 +

m=3∑
m=1

am sin(mπz/h2)], (11)

where coefficients am are constants with |am| � 1 (a linear profile perturbed by a series
of sinusoidal harmonics) together with velocity profiles

F2(z/h2) =

n=4∑
n=1

bnχn, (12)
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Figure 6. The curves corresponding to those in figure when, downstream of a transition, the
density profiles are given by (6) and (11) and velocity profiles are either (a), case (a), a sum
of terms like those in (2), with n= 1 to 4, or (b), case (b), a sum of the first four sinusoidal
harmonics. The shapes of the profiles (shown in figure 7) are those for which a stable transition
occurs with E > 0 and with the smallest Fr.

where χn is either (a): qn[π(1 − z/h)]n sin[π(1 − z/h)] as in (2) but with qn selected
to make the maximum value of each term equal to unity, or (b): sin(nπz/h2) as in
(11); the coefficients bn are constants with |bn| � 1. The coefficients, am and bn, are
further confined to values for which the density profiles are statically stable and the
velocity is non-negative. For values consistent with this constraint, the smallest value
of Fr at which E > 0 and S < 1 in case (a) is Fr c = 2.98 with q > 1.72 and in case (b)
is Fr c = 3.13 with q > 1.52. The curves corresponding to those of figure 5 are shown
in figure 6.

Since the values of Frc are less than 3.34, the conclusion is that there are
downstream flow states to which the flows observed in Lake Geneva may change
after a hydraulic jump, although the observed value of Fr does not greatly exceed
Fr c, and the flow state in Lake Geneva is, in this sense, marginal. There are only
small ranges, 1.9903 > q > 1.9888 with corresponding 1 � P < 1.0005 in case (a), and
1.6149 > q > 1.6113 with corresponding 1 � P < 1.0019 in case (b), in which flows
with the observed Fr =3.34 can undergo a stable transition. The density and velocity
profiles corresponding to Fr c for which transitions are possible in cases (a) and (b)
are shown in figure 7. (Values of the coefficients, am and bn, giving the smallest value,
Frc, are given in the figure caption.) The most obvious change from the observed
profiles (figure 1(a, c) is in density where there is a notable increase in the upper part
of the cascading water, resulting from mixing within the stratified moving layer.

A further question may be posed: ‘If a transition from the observed flow state
in Lake Geneva occurs, what is the downstream flow state that is reached with a
maximum loss in the energy flux?’ We might argue that, if there is in the transition a
process that is favoured by greater energy loss, then the most likely flow downstream
will be that with the greatest loss in energy flux, or that the most favoured transition
is one to a flow state carrying a minimum energy flux downstream. In this case we do
not, as above, seek the smallest Fr, but, setting Fr = 3.34, the flow states in cases (a)
and (b) are examined to determine that with the greatest loss in energy flux, insisting
that S < 1, so any transition is stable. The greatest loss, E =0.027 (given by 10), found
is in case (a) when the transition amplitude, q, =1.88 and P = 1.0, so there is no
entrainment of the upper layer. The density and velocities downstream of the possible
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transitions with E > 0 from the cascading flow with the profiles observed in Lake Geneva with
minimum Fr. The two cases, (a) and (b), are as described in the text. The coefficients in
(a) are am = −0.3, −0.1, 0.0, for m= 1–3, respectively, and bnqn = 0.0, 0.076, 0.0, 0.0296, for
n= 1–4, respectively. The coefficients in (b) are am = 0.0, −0.1, 0.0, for m= 1–3, respectively,
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Figure 8. The profiles of (a) down-slope velocity and (b) density that follow stable transitions
with the greatest rate of energy loss, E, from the density and velocity of the cascading flow
observed in Lake Geneva. The profiles are scaled for comparison with the up-stream profiles
in figures (a and c) respectively, from which they have evolved after a transition in which the
energy flux is reduced. For comparison with those in figure 7, the unscaled coefficients are
am = −0.3, −0.1, 0.0, for m= 1–3, respectively, and bnqn =0.0, 0.0, 0.064, 0.0296, for n= 1–4,
respectively.

transition with maximum loss of energy flux are shown in figure 8, scaled so that they
can be compared with the upstream profiles from which they evolve. The coefficients,
am and bn, of this solution are given in the figure caption, and differ from those in
figure 7, case (a). Both the maximum velocity and the maximum densities are decreased
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in transition whilst the thickness of the flowing and stratified layer is increased by a
factor q from 24 m to 45.1 m. The (dimensional) maximum rate of loss of energy flux
per unit width of the cascading flow in a stable transition is 0.027[(g�h1)

3/2ρ0h1] or,
substituting values, about 6.9 × 10−2 W m−1, substantially less than the kinetic energy

flux in the cascading flow, ρ0U
3
maxh1

∫ 1

0
F 3

1 (x) dx/2, equal to 1.92 Wm−1.

3.2.4. Along-slope flow

In some limited conditions the effect of an along-slope flow can be taken into
account. If, for example, it is supposed that the postulated hydraulic jump is aligned
in the y-direction (or, in Lake Geneva, that a transition lies along an isobath),
the equations of volume and mass flux conservation in the x-direction through the
transition, (A1) and (A5), are unchanged. So too is that of momentum flux, (A7), since
the pressure is hydrostatic. The y-component of velocity, taken (in a form similar to
that of the x-component in (5)) as ViG(z/hi) in 0 < z < hi , where Vi is the maximum
y-component of the flow, and as ViG(1) in z >hi with i = 1 and 2, however, enters
into the equation for the rate of loss of energy flux, contributing an additional term

(Fr/2){(V1/U1)
2

∫ 1

0

F1G
2
1 dx − (V2/U1)

2

∫ 1

0

F2G
2
2 dx[

∫ 1

0

f1F1 dx/

∫ 1

0

f2F2 dx]}

to the right-hand side of (A10).
The problem of selecting the flow downstream of the transition remains. If, for

example, the transition is shape-preserving with G1 = G2 = G, and if V2/V1 =U2/U1

whilst selecting G(1) = 0 (i.e. so that the y-axis is chosen to move with the speed of the
along-slope flow above the cascading water in Lake Geneva, which does not, however,
ensure no-slip at z = 0 in the y-component of flow downstream of the transition) the
additional term becomes

(Fr/2)(V1/U1)
2

∫ 1

0

FG2 dx(1 − p3/q2).

Using the values of V1, U1, F and G derived from the data in Lake Geneva
(figure 1a, b), the critical value of Fr for a transition to occur is about 5.20 when P =1
and q = 3.97. Although less than that shown in figure 5(a) (Fr c =12.5), the critical
value still exceeds that observed, 3.34, and no shape-preserving transition appears to
be possible.

4. Discussion
The short answer to the question ‘Are cascading flows stable?’ is ‘Some (at least) are

apparently unstable to some types of disturbance.’ The mean flow of the coldwater
cascade in Lake Geneva is unstable to Kelvin–Helmholtz instability. The unstable
mode 1 disturbances appear to be associated with the shear above the level of the
maximum mean down-slope current rather than the near-bed region where turbulence
may be sustained by the stress on the bed. The relatively long e-folding time scale of
disturbances, about 2 h, in the lake suggests, however, that unstable disturbances will
not grow fast enough to control the turbulence within the plume. The results provide
support for the conjecture by Turner that flows in inclined plumes are marginally
unstable. They are, moreover, consistent with the proposition that some naturally–
occurring, forced turbulent stratified mean shear flows, including perhaps those driven
by wind in the upper ocean, are in a similar state of marginal stability.

Whether in cascades there are, as in Mittendorf’s experiments, periodic transitions
from near laminar flow to turbulent conditions, and back again, is not known. It seems
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unlikely that the finite-amplitude propagating roll waves are related to the marginal
stability of the flow. No measurements of turbulence in cascading flows are, however,
yet available that might establish, for example, whether turbulence is intermittent or
whether the roll waves are more highly turbulent than the flows between.

We have examined the possibility that stationary hydraulic jumps may occur
in cascading flows. Some density and velocity profiles are found to which stable
transitions are possible. By ‘stable’ transitions we mean that the flows following
transitions are not themselves able to undergo further shape-preserving transitions
without entrainment; for given P , flows with the chosen profiles are unique. In this
restricted and conditional sense, the observed flow appears to be unstable to hydraulic
transition; hydraulic jumps may be possible, triggered for example as the flow passes
over changes in topography. The smallest values of Fr at which transitions E > 0 and
S < 1 are possible from flows with the density and velocity profiles observed in Lake
Geneva, Fr c =2.98 in case (a) and Fr c = 3.13 in case (b) (§ 3.2.3), are, however, only
slightly less than that of the actual flow. Again, the cascading flow may be regarded
as being marginally unstable to transitions.

It was hoped that a study of different downstream states might help in establishing
which is most likely. It is of note that the velocity and density profiles, the downstream
flow states, found to minimize the value Fr (figure 7) and to maximize E at Fr = 3.34
(figure 8) are almost identical, suggesting that a state close to that shown in
figure 8 may be favoured. The restricted ranges of possible jump amplitudes, q ,
and entrainment value, P , are notable; without some mechanism to enhance the
value, Fr, of the flow (i.e. to increase Umax or to decrease h1) transitions are only
possible within a limited range of jump amplitudes and with moderate entrainment.
Without some additional constraint or information about the processes of mixing and
their efficiency, or perhaps a condition such as the one of maximum change in energy
flux examined in § 3.2.3, the precise value of jump amplitude or entrainment cannot
be determined. It is nevertheless remarkable that the flow state following a possible
transition is so severely limited in form and amplitude.

Although solutions are found for stable transitions conserving volume, mass and
momentum flux, with energy loss, the existence of stationary transitions at values
of Fr > Fr c has not been proved and must be in doubt, in spite of the persuasive
images of stationary internal hydraulic jumps in the atmosphere, e.g. that in the lee
of the Sierra Nevada range illustrated in Turner (1973, figure 3.11) and Lighthill
(1978, figure 117) with q possibly in the range 5–10. (Although Turner describes the
phenomena as a hydraulic jump, Lighthill is more cautious, calling it ‘something like
a hydraulic jump’. Scorer (1972) ascribes it to flow separation preceding a rotor in
the first of several internal lee waves.) It is usually accepted that transitions occur in
flows in which no waves can propagate upstream, carrying energy from a transition
and possibly changing the flow approaching a transition. Here however, as found in
§ 2.3.1, there are waves that can propagate upstream. The group speed of long internal
waves is equal to their phase speed (Thorpe 1978; Baines 1995), implying that these
waves may carry energy upstream from the regions of stationary transitions, although
only slowly in comparison with Umax . Values of Fr >Fr c may not preclude upstream
travelling waves and, in this sense, Fr c is not a critical Froude number of the flow.
Steady stable and stationary jumps may be possible only in spatially decelerating flows
where upstream wave propagation is inhibited, such as radially spreading stratified
flows or those in two dimensions over a decreasing bottom slope.

One further point deserves mention. The minimum value of Fr found in § 3.2.3 at
which the cascading flow in Lake Geneva can undergo hydraulic jumps, 2.98 in case
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(a) and 3.13 in case (b), are greater than the critical value, Fr c = 2.23, at which the
flow becomes unstable to Kelvin–Helmholtz instability. If this instability can occur
in a flow as described in § 2, there must be other flow states to which the observed
flow will change following instability and the subsequent generation of turbulence
and mixing. Rather than produce the overall changes (e.g. in flow depth, h) found in
hydraulic jumps, the instability is instead likely to lead to relatively localized mixing
within the initial profiles; such internal mixing may reduce the gradients of density
and velocity where instability occurs within the cascading flow, but is unlikely to
involve substantial entrainment of the external fluid into the inclined plume or to
promote dramatic changes in its structure or thickness, h.

Flux conserving, and energy flux reducing, changes of the down-slope velocity and
density profiles observed in Lake Geneva have been found in downstream states in
which, over limited depth intervals, the density and velocity gradients are reduced
or completely destroyed (i.e. the fluid in the latter becoming locally uniform in
density and with zero velocity gradient) and in which there is no entrained flux (i.e.
Q =0 or P = 1) provided the vertical extent of the mixed region is sufficiently small,
typically less than 3 m. The absence of conditions in which hydraulic jumps involving
entrainment and a substantial change in the density and velocity can occur does not
therefore exclude local changes within the interior structure of the cascading water
caused by Kelvin–Helmholtz instability.

We are most grateful to Mrs Kate Davis for assistance in the preparation of figures.
B. Ozen was funded by the Swiss Science Foundation grant 200020-109349.

Appendix A. Conservation equations in general form
With velocity, (5), and density, (6), conservation of volume flux from upstream

(i = 1) to downstream (i = 2) through the assumed transition is satisfied by

U1h1

∫ 1

0

F1(x) dx + Q =U2h2

∫ 1

0

F2(x) dx, (A 1)

where Q is the flux of fluid of density ρ0(1 − �), per unit channel width, from the
overlying uniform layer. This can be written

Q/

(
U1h1

∫ 1

0

F1(x) dx

)
+ 1 = U2h2

∫ 1

0

F2(x) dx/

(
U1h1

∫ 1

0

F1(x) dx

)
, (A 2)

or

Q/U1h1

∫ 1

0

F1(x) dx = P − 1, (A 3)

where an entrainment factor,

P = U2h2

∫ 1

0

F2(x) dx/

(
U1h1

∫ 1

0

F1(x) dx

)
> 1, (A 4)

is a measure of the entrainment.
The conservation of mass flux, including the flux Qρ0(1 − �) from the overlying

layer, leads in general, using (A1), to a further relation:

U1h1

∫ 1

0

f1(x)F1(x) dx = U2h2

∫ 1

0

f2(x)F2(x) dx, (A 5)
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so that (A4) can be written

P =

∫ 1

0

f1(x)F1(x) dx

∫ 1

0

F2(x) dx/

(∫ 1

0

f2(x)F2(x) dx

∫ 1

0

F1(x) dx

)
. (A 6)

Momentum conservation (conservation of
∫

pi dz +
∫

(ρiUi)Ui dz, where pi is the
pressure, assumed to be hydrostatic upstream and downstream of a transition) leads
to

U 2
2 h2

∫ 1

0

F 2
2 (x) dx − U 2

1 h1

∫ 1

0

F 2
1 (x) dx

= 2g�

[
h2

1

∫ 1

0

∫ 1

x

f1(y) dy dx − h2
2

∫ 1

0

∫ 1

x

f2(y) dy dx

]
, (A 7)

where g is the acceleration due to gravity and � � 1. Writing q = h2/h1 and, using
(A5),

U2 = U1

∫ 1

0

f1(x)F1(x) dx/

(
q

∫ 1

0

f2(x)F2(x) dx

)
, (A 8)

(A7) gives

U 2
1 /g�h1 = 2q

[
q2

∫ 1

0

∫ 1

x

f2(y) dy dx −
∫ 1

0

∫ 1

x

f1(y) dy dx

]/
[∫ 1

0

F 2
1 (x) dx

{
q − P 2

∫ 1

0

F 2
2 (x) dx

(∫ 1

0

F1(x) dx

)2
/

[∫ 1

0

F 2
1 (x) dx

(∫ 1

0

F2(x) dx

)2
]}]

, (A 9)

as a condition for a transition to occur.
In general, a non-dimensional loss in energy flux per unit channel width, E′ (the

change in the sum of the kinetic energy flux,
∫

(ρiU
2
i /2)Ui dz, and the potential energy

flux,
∫

gρizU i dz, accounting for the work done by the pressure force,
∫

piUi dz) can
be written as

E′/(gρ0�U1h
2
1)

=
(
U 2

1 /2g�h1

) ⎧⎨
⎩

∫ 1

0

F 3
1 (x) dx −

∫ 1

0

F 3
2 (x) dx

[∫ 1

0

f1(x)F1(x) dx

/∫ 1

0

f2(x)F2(x) dx

]3/
q2

⎫⎬
⎭

+ 2

[∫ 1

0

xF 1(x) dx −
∫ 1

0

xf 1(x)F1(x) dx +

∫ 1

0

F1(x)

∫ 1

x

f1(y) dy dx

]

− 2q

[∫ 1

0

f1(x)F1(x) dx

/∫ 1

0

f2(x)F2(x) dx

]

×
[∫ 1

0

xF 2(x) dx −
∫ 1

0

xf 2(x)F2(x) dx +

∫ 1

0

F2(x)

∫ 1

x

f2(y) dy dx

]
, (A 10)

provided that the kinetic energy flux carried by the entrained flow is negligible, with
U 2

1 /g�h1 given by (A9). With no source of energy flux within the transition, E′ must
not be negative if the transition is physically possible.
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The flow downstream of a transition may be regarded as unstable and, with the
chosen profiles of density and velocity, is not unique if a further transition is possible
with no entrainment (P = 1) to a flow with the same velocity and density profiles.
Proceeding as in Thorpe (2007), we find that the condition for instability is

U 2
1 /g�h1

> 4q3

[∫ 1

0

∫ 1

x

f2(y) dy dx

/∫ 1

0

F 2
2 (x) dx

]

×
[∫ 1

0

f2(x)F2(x) dx

/∫ 1

0

f1(x)F1(x) dx

]2

f2(0). (A 11)

Noting that Fr = U 2
1 /g�h1, we define a stability parameter S as the ratio of the

left-hand side of to the right-hand side of (A11):

S ≡ Fr

/{
4q3

[∫ 1

0

∫ 1

x

f2(y) dy dx

/∫ 1

0

F 2
2 (x) dx

]

×
[∫ 1

0

f2(x)F2(x) dx

/∫ 1

0

f1(x)F1(x) dx

]2

f2(0)

⎫⎬
⎭ , (A 12)

where S > 1 implies instability and S < 1 implies stability, when no further shape-
preserving transition can occur in the flow downstream of the transition without
entrainment from the upper layer. Two conditions are therefore applied for transitions
to be possible, E′ � 0 and S > 1.

For the shape-preserving transitions with F1(z/h1) = F2(z/h2), = F (x), say, and
f1(z/h1) = f (x), f2(z/h2) = δf (x), so that f2(0) = δ because f1(0) = 1, (A12) reduces
to

S = Fr

/{
4q3

[∫ 1

0

∫ 1

x

f (y) dy dx

/∫ 1

0

F 2(x) dx

]
δ4

}
. (A 13)

Since in this case P = 1/δ from (A6), and (A9) gives

Fr = U 2
1 /g�h1 = 2q(q2 − P )

∫ 1

0

∫ 1

x

f (y) dy dx

/[
P (q − P 2)

∫ 1

0

F 2(x) dx

]
, (A 14)

(A13) becomes

S = P 3(q2 − P )/[2q2(q − P 2)] > 1, (A 15)

for instability to occur. (This is independent of the form of the profiles of density
and velocity and so the curve, S = 1 in figure 5(a) is valid for all shape-preserving
transitions.)
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